- Title
- Discovery of 42 genome-wide significant loci associated with dyslexia
- Creator
- Doust, Catherine; Fontanillas, Pierre; Bell, Robert K.; Pennell, Craig E.; Bielenberg, Jessica; Bryc, Katarzyna; Bullis, Emily; Coker, Daniella; Partida, Gabriel Cuellar; Dhamija, Devika; Das, Sayantan; Elson, Sarah L.; Filshtein, Teresa; Eising, Else; Fletez-Brant, Kipper; Freyman, W; Gandhi, PM; Heilbron, K; Hicks, B; Hinds, DA; Jewett, EM; Jiang, Y; Kukar, K; Lin, KH; Gordon, Scott D.; Lowe, M; McCreight, J; McIntyre, MH; Micheletti, SJ; Moreno, ME; Mountain, JL; Nandakumar, P; Noblin, ES; O’Connell, J; Petrakovitz, AA; Wang, Zhengjun; Poznik, GD; Schumacher, M; Shastri, AJ; Shelton, JF; Shi, J; Shringarpure, S; Tran, V; Tung, JY; Wang, X; Wang, W; Alagöz, Gökberk; Weldon, CH; Wilton, P; Hernandez, A; Wong, Carol A.; Tchakouté, CT; Abbondanza, F; Allegrini, AG; Andlauer, TFM; Barr, CL; Bernard, M; Molz, Barbara; Blokland, K; Bonte, M; Boomsma, DI; Bourgeron, T; Brandeis, D; Carreiras, M; Ceroni, F; Csépe, V; Dale, PS; de Jong, PF; Aslibekyan, Stella; Démonet, JF; de Zeeuw, EL; Feng, Y; Franken, MCJ; Gerritse, M; Gialluisi, A; Guger, SL; Hayiou-Thomas, ME; Hernández-Cabrera, J; Hottenga, JJ; Auton, Adam; Hulme, C; Jansen, PR; Kere, J; Kerr, EN; Koomar, T; Landerl, K; Leonard, GT; Liao, Z; Lovett, MW; Lyytinen, H; Babalola, Elizabeth; Martinelli, A; Maurer, U; Michaelson, JJ; Mirza-Schreiber, N; Moll, K; Morgan, AT; Müller-Myhsok, B; Newbury, DF; Nöthen, MM; Paus, T
- Relation
- Nature Genetics Vol. 54, p. 1621-1629
- Publisher Link
- http://dx.doi.org/10.1038/s41588-022-01192-y
- Publisher
- Nature Publishing Group
- Resource Type
- journal article
- Date
- 2022
- Description
- Reading and writing are crucial life skills but roughly one in ten children are affected by dyslexia, which can persist into adulthood. Family studies of dyslexia suggest heritability up to 70%, yet few convincing genetic markers have been found. Here we performed a genome-wide association study of 51,800 adults self-reporting a dyslexia diagnosis and 1,087,070 controls and identified 42 independent genome-wide significant loci: 15 in genes linked to cognitive ability/educational attainment, and 27 new and potentially more specific to dyslexia. We validated 23 loci (13 new) in independent cohorts of Chinese and European ancestry. Genetic etiology of dyslexia was similar between sexes, and genetic covariance with many traits was found, including ambidexterity, but not neuroanatomical measures of language-related circuitry. Dyslexia polygenic scores explained up to 6% of variance in reading traits, and might in future contribute to earlier identification and remediation of dyslexia.
- Subject
- dyslexia; genetic; ambidexterity; chromosome
- Identifier
- http://hdl.handle.net/1959.13/1493197
- Identifier
- uon:53505
- Identifier
- ISSN:1061-4036
- Rights
- © The Author(s) 2022. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
- Language
- eng
- Full Text
- Reviewed
- Hits: 34489
- Visitors: 34299
- Downloads: 6
Thumbnail | File | Description | Size | Format | |||
---|---|---|---|---|---|---|---|
View Details Download | ATTACHMENT02 | Publisher version (open access) | 7 MB | Adobe Acrobat PDF | View Details Download |